THE ISOLATION AND STRUCTURE OF NEW BUFADIENOLIDE, RESIBUFAGIN AND THE ISOLATION OF MARINOBUFAGIN $^{1)}$

Yoshiaki Kamano, Hiroshi Yamamoto, Katsuo Hatayama, Yoshihiro Tanaka Michiko Shinohara and Manki Komatsu

Research Laboratory, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan

(Received in Japan 10 August 1968; received in UK for publication 30 September 1968)

Among some twenty bufadienolides hitherto known, thirteen of them were isolated²⁾ from the Chinese toad venom drug, Ch'an Su (# if). We have recently described³) on the detection of unknown compounds from Ch'an Su by using thin-layer chromatography. This report concerns with the isolation and characterization of them.

The chloroform extract of Ch'an Su⁴) afforded a mixture of unknown materials by column chromatography on silica gel which was eluted by adopting the dry method⁵) using an <u>n</u>-hexane-acetone mixture. By rechromatography of the mixture, there were obtained two bufadienolides, one of which was identified to be marinobufagin $(V)^{6}$, first isolation from Ch'an Su. The other compound, mp.210-212°, which was obtained as colorless needles from methaned, was named resibufagin. Based on the following evidence, structure I (3 β -hydroxy-19-oxo-14, 15 β -epoxy-5 β -bufa-20, 22-dienolide) was assigned to the new bufadienolide.

From molecular weight determination (m/e 398) and elemental analysis the compound was found to have the formula $C_{24}H_{30}O_5$. The presence of an α -pyrone ring was indicated from UV (λ Me^{OH} 301 mµ, log ξ 3.60) and IR spectra (\bigvee_{max}^{KBr} 1714, 1630, 1535 cm⁻¹). The structure was supported by the NMR spectra (CDCl₃), which exhibited signals at τ 2.24 (1H, dd, J = 3 and 10 cps, C_{22} -H), 2.77 (1H, dd, J = 3 and 1 cps, C_{21} -H) and 3.79 (1H, dd, J = 10 and 1 cps, C_{23} -H).⁷)</sup> The appearance of a signal at a low field of τ 0.50 (1H, s) indicated the presence of a formyl group, the location of which was deduced to be C_{10} based on analogy with

- I. R = H resibufagin
- II. R = Ac acetyl-resibufagin

- V. R = H marinobufagin
- VI. R = Ac acetyl-marinobufagin

VIII. hellebrigenin

- III. R = H resibufaginol
- IV. R = Ac acetyl-resibufaginol

VII. resibufogenin

IX. bufotalinin

hellebrigenin, which showed the signal at $\approx 0.00^{7}$). 18-Methyl proton showed a singlet at ≈ 9.14 . ⁽⁷⁾⁸⁾⁹⁾ A signal at ≈ 6.49 (1H, s) was assignable to the tertiary proton at C₁₅ in 14, 15 β -epoxy grouping, of which presence was clear from the IR spectral data (3040 cm⁻¹). ⁽⁸⁾¹⁰⁾ The presence of the epoxy ring was also supported from the IR and NMR spectra of the corresponding acetate (II), mp. 195-199°.

The treatment of I with NaBH₄ afforded an alcohol, named resibufaginol (III), mp.207-210°, which, on acetylation, yielded acetate (IV) as an amorphous solid. Compound III and IV exhibited 19-methylene signal⁸⁾ as an AB quartet at ≈ 6.27 (J = 10.5 cps) and 5.78 (J = 11 cps), respectively.

Marinobufagin (V, 3β , 5-dihydroxy-14, 15 β -epoxy-5 β -bufa-20, 22-dienolide), mp. 222-224°, was obtained as colorless prisms from acetone. Analytical values and mass spectrum determination (m/e 400) supported the formula $C_{24}H_{32}O_5$. The compound had the following spectral properties; $\sum \frac{\text{MeOH}}{\text{max}} 300 \text{ m}\mu$ (logg 3.61); $\int \frac{\text{KBr}}{\text{max}} 3400-3000 \text{ cm}^{-1}$ (OH), 3040 cm⁻¹ (C₁₅-H), 1760, 1640, 1540 cm⁻¹(α -pyrone ring); \gtrsim 2.26 (1H, dd, J = 3 and 10 cps, C₂₂-H), 2.78 (1H, d, J = 3 cps, C₂₁-H), 3.77 (1H, d, J = 10 cps, C₂₃-H), 5.83 (1H, broad peak, C₃-H), 6.48 (1H, s, C₁₅-H), 9.02 (3H, s, 19-CH₃), 9.20 (3H, s, 18-CH₃). 3-Acetate (VI) showed an infrared absorption at 3500 cm⁻¹ (C₅-OH) and NMR signals at \gtrsim 7.90 (3H, s, CH₃COO) and 4.76 (1H, broad peak, C₃-H). These data are consistent with those reported for marinobufagin.⁶

Resibufagin (I) isolated from Ch'an Su is the third bufadienolide having 10formyl group (the others are hellebrigenin (VIII) and bufotalinin $(IX)^{11}$). Resibufaginol (III) obtained from I in the present studies corresponds to 10-hydroxy compound of resibufogenin (VII), and may be obtained from toad venoms on further examination.¹² It is expected that resibufagin (I) and resibufaginol (III) would show pharmacological activities different from those of resibufogenin (VII).

REFERENCES

1. Bufadienolides. I.

- K. Meyer, <u>Pharmac. Acta Helv.</u>, <u>24</u>, 222 (1949); K. Meyer, <u>Helv. Chim. Acta</u>, <u>35</u>, 2444 (1952); J.-P. Ruckstukl, K. Meyer, <u>ibid.</u>, <u>40</u>, 1270 (1957); P. Hofer, K. Meyer, <u>ibid.</u>, <u>43</u>, 1495 (1960); P. Hofer, H. Linde, K. Meyer, <u>ibid.</u>, <u>43</u>, 1950 (1960); P. Hofer, H. Linde, K. Meyer, <u>ibid.</u>, <u>43</u>, 1950 (1960); P. Hofer, <u>H. Linde</u>, K. Meyer, <u>ibid.</u>, <u>43</u>, 1955 (1960); F. Bernoulli, H. Linde, K. Meyer, <u>ibid.</u>, <u>45</u>, 240 (1962); H. Linde, P. Hofer, K. Meyer, <u>ibid.</u>, <u>44</u>, 1243 (1966).
- 3. M. Komatsu, Y. Kamano, M. Suzuki, Bunseki Kagaku, 14, 1949 (1965).
- 4. Resibufagin and Marinobufagin were isolated both from "disk-like" Ch'an Su and "thin- Plate" one.
- 5. M. Komatsu, T. Okano, Yakugaku Zasshi, 87, 712 (1967).
- K. Meyer, <u>Helv. Chim. Acta</u>, <u>34</u>, 2147 (1951); S. Pataki, K. Meyer, <u>ibid.</u>, <u>38</u>, 1631(1955);
 H. Schröter, R. Rees, K. Meyer, <u>ibid.</u>, <u>42</u>, 1385 (1959).
- 7. S. M. Kupchan, R. H. Hemingway, J. C. Hemingway, Tetrahedron Letters, 1968, 149.
- 8. H. Linde, P. Hofer, K. Meyer, Helv. Chim. Acta, 49, 1243 (1966).
- 9. K. Tori, K. Aono, Shionogi Kenkyusho Nempo, No. 15, 130 (1965).
- H. B. Henbest, G. D. Meakins, B. Nicholls, K. J. Taylor, <u>J. Chem. Soc.</u>, <u>1957</u>, 1459;
 J. -P. Ruckstukl, K. Meyer, <u>Helv. Chim. Acta</u>, <u>41</u>, 2121 (1958); H. Linde, K. Meyer, <u>ibid.</u>, <u>42</u>, 807 (1959).
- Hellebrigenin was obtained from Ch'an Su (Ref. 2), and bufotalinin was isolated from <u>Bufo bufo L.</u> (H. Schröter, Ch. Tamm. T. Reichstein, V. Deulofeu, <u>Helv. Chim. Acta</u>, <u>41</u>, 140 (1958)) and <u>Bufo arenarum</u> Hensel (R. Rees, O. Schindler, V. Deulofeu, T. Reichstein, <u>ibid.</u>, <u>42</u>, 2400 (1959).
- 12. Until now, hellebrigenol and cinobufaginol were isolated as 19-hydroxy compounds of bufadienolides, and the latter was lately obtained from Ch'an Su by Meyer group (Ref. 8).